What is the probability that a student has blue eyes, given that they are left-handed?

	Right- Handedness Blue Eyes	210	Left- Handedness
Brown Eyes	670	90	240
	880	120	1000

A. $30 / 210$	Go To \# 10
B. $30 / 240$	Go To \# 2
C. $30 / 120$	Go To \# 7
D. None of the above	Go To \# 4

A. Yes. The ratio of blue eyed right-handers is the Go To \# same as the brown eyed left-handers.

11
B. Yes. The ratio of blue eyed:brown eyed lefthanders is $1: 3$, and the ratio among righties is 210/670, nearly the same.
C. No, the ratio of blue eyed right-handers is the same as the brown eyed left-handers.

Go To \#
10
Go To \# 4
D. No, the ratio of right-handers to left-handers is Go To \# not 1:1.

A. $670 / 1000$	Go To \# 11
B. $670 / 880$	Go To \# 5
C. $670 / 760$	Go To \# 6
D. not enough information	Go To \# 8

A. 0.900	Go To \# 5
B. 0.999	Go To \# 11
C. 0.001	Go To \# 8
D. 0.729	Go To \#
3	

A. 0.648	Go To \# 6
B. 0.784	Go To \# 8
C. 0.352	Go To \# 9
D. cannot be determined	Go To \# 1

A. 0.0081	Go To \# 1
B. 0.2401	Go To \# 2
C. 0.3430	Go To \# 7
D. 0.1029	Go To \#
9	

40% of cars in a certain area are manufactured in the US. 30\% are from Japan 10% are from Germany 20\% are from other countries

If 18 cars are selected at random, what is the probability that exactly four are Japanese?

Game A: win a prize by getting EXACTLY 50\% heads

Game B: win a prize by getting between 45% and 55% heads

Your choices:
Flip 20 times or flip 50 times.
Which statement is true?
A. 50 flips for Game A is better than 20 flips, since the Law of Large Numbers says that the longer you flip a coin, the more likely you'll get exactly half heads.
B. 20 flips for Game B is better than 50 flips, because a smaller sample size will produce a smaller margin for error.
C. 20 flips for Game A is best, because getting exactly 10 heads out of 20 flips is more likely than getting exactly 25 heads out of 50 flips
D. Both 20 flips and 50 flips have an equal chance of getting EXACTLY 50\% heads.

When rolling 2 dice, what is the probability that the sum is 7 given that one die is a 5 ?

A. $2 / 6$	Go To \# 10
B. $2 / 12$	Go To \# 2
C. $2 / 11$	Go To \# 1
D. $1 / 12$	Go To \# 7

If 90% of the households in a certain region have answering machines and 50% have both answering machines and call waiting, what is the probability that a household chosen at random which is found to have an answering machine also has call waiting?
\(\left.$$
\begin{array}{|l|c|}\hline \text { A. } 0.56 & \begin{array}{c}\text { Go To \# } \\
4\end{array} \\
\hline \text { B. } 0.45 & \begin{array}{c}\text { Go To \# } \\
11\end{array}
$$

\hline C. 0.50 \& Go To \#

5\end{array}\right]\)| Go To \# |
| :---: |
| 3 |

(Assume the two events are related to the same chance process, like picking cards out of a deck.)

A. If two events are independent, then they must be disjoint.	Go To \# 8
B. If two events are disjoint, then they must be independent.	Go To \# 9
C. If two events are not independent, then they must be disjoint.	Go To \# 6
D. If two events are independent, then they cannot be disjoint.	Go To \# 5

Key

7
2

4
3
11
5
8
6
9
(1)

