If ten executives have salaries of \$80,000, six have salaries of \$75,000, and three have salaries of \$70,000, what is the median salary?

- **A.** \$75,000 **Go to** 7
- **B.** \$76,842 **Goto** 10
- **C.** \$77,500 **Go to** 2
- **D.** \$80,000 **Go to** 5
- E. None of the above Go to 6

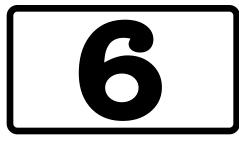
The mean score on a national exam is 500 with a SD of 100. If each score is increased by 20 and then increased by 10%, what are the new mean and SD?

- **A.** 570, 100 **Go to** 9
- **B.** 570, 110 **Go to** 4
- **C.** 572, 100 **Go to** 11
- **D.** 572, 110 **Go to** 6
- **E.** 572, 132 **Go to** 8

If every man married a woman who was exactly 3 years younger than he, what would be the correlation between the ages of married men & women?

- A. somewhat negtive. Go to 1
- **B.**0 **Go to** 10
- C. somewhat positive Go to 7
- **D.** nearly 1 **Go to** 5
- **E.** 1

Go to 13


In two AP classes' final exam, 25 students averaged 87 while 30 students averaged 98. If the two groups are combined, what will the final average be?

A .	92	Go	to	12
в.	92.5	Go	to	1
C.	93	Go	to	8
D.	94.5	Go	to	3
E.	95	Go	to	13

Suppose the regression line, y=a+4x, passes through (1,3). If x-bar and y-bar are the sample means of x and y, then y-bar =

A.x-bar	Go to 9
B. 4(x-bar)	Go to 10
C. 3 + 4(x-bar)	Go to 6
D. 2+x-bar	Goto 2
E. -1+4(x-bar)	Goto 7

If the standard deviation of a set of observations is O, you can conclude

- **A.** there is no rel'p **Go to** 12 between observ'ns
- **B.** the mean is 0 **Go to** 8
- C. all observations Go to 9 are the same value
- **D.** there was a **Go to** 11 mistake in calc'ns
- **E.** none of the above **Go to** 4

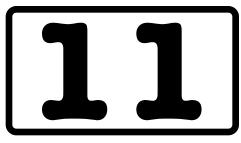
Suppose the correlation betw. two variables is r = .28. What will the new r be if .17 is added to all x's and every y is doubled and they are interchanged?

A. .28	Go to	10
B. .45	Go to	6
C. .56	Go to	9
D. .90	Go to	2
E. 28	Go to	11

A sample of golf scores: n=20, mean = 84.5, SD=11.5, Min.=68, Q1=78, Med=86, Q3=91, and Max. = 112. What can be said about the number of outliers?

A. none	Goto 3
B. one	Go to 13
C. two	Go to 5
D. at least 1	Goto 12
E. at least 2	Goto 1

Using the most commonly accepted definition of outliers, a set has five outliers. If every value is increased by 20%, how many outliers are there now?


Go to	3
Go to	11
Go to	12
Go to	8
	Go to Go to Go to

E. Impossible to tell **Go to** 4

When a dataset has suspect outliers, which of the following are preferred measures of central tendency and of variability?

- **A.** mean and SD **Go to** 9
- **B.** mean and **Go to** 11 variance
- C. mean and range Go to 4
- D. median and range Go to 6
- **E.** median and IQR **Go to** 2

A data set includes two outliers, one at each end. If both of these outliers are removed, which of the following is a possible result?

- **A.** mean and SD stay **Go to** 12 the same
- **B.** median and SD **Go to** 8 stay the same
- **C.** SD and variance **Go to** 3 stay the same
- **D.** mean and median **Go to** 4 stay the same
- E. mean and SD go up Go to 13

Consider n pairs of numbers. Suppose x-bar=4, $s_x=3$, y-bar=2, and $s_y=5$. Of the following, which could be the least squares line?

A. y = 2 + x	Goto 1
B. y = -6 + 2x	Goto 7
C. y = -10 + 3x	Go to 5
D. y = 5/3 - x	Go to 13
E. $v = 6 - x$	Go to 3

If Q1 = 50 and Q3 = 70, which of the following must be true? I. The median = 60 II. The mean is betw. 50 & 70 III. The std. deviation is ≤ 20

- **A.** I only **Go to** 5
- B. II only Go to 7
- **C.** III only **Go to** 2
- **D.** All are true. **Go to** 10
- E. None must be true Go to 1

Trail Path: 1, 5, 7, 10, 2, 6, 9, 11, 4, 8, 12, 3, 13, (1) Problems taken from Barron's Flash Cards, Data Analysis deck

A .	Go to
B.	Go to
C.	Go to
D.	Go to
E.	Go to