Name: \qquad
Central Limit Theorem

1. An insurance company has found that repair claims have a mean of $\$ 525$ with standard deviation of $\$ 375$. Because most of the claims are for minor repairs and a few are for very extensive work, the distribution is skewed to the right.
A. A simple random sample of 60 repairs is recorded. State the mean, standard deviation, and shape of the distribution of \bar{x}.
B. What is the probability that the mean repair cost for these 60 claims is greater than $\$ 610$?
C. What is the probability that the mean repair cost for these 60 claims is between $\$ 500$ and $\$ 600$?
D. Approximately 90% of all sample means of size 60 will be in the interval $\$ 525 \pm M$. Find the value of M.
E. How would your answer C change if the sample size is increased to 100 ? Explain.
F. The insurance company wants to choose a sample size for which $P(\bar{x} \leq 550)$ is greater than 90%. Find the smallest sample size needed for this to be true.
2. The Mars Company makes M\&M's and advertises that 30% of all plain M\&M's are brown. A SRS of 125 plain M\&M's is drawn.
A. Find the mean and standard deviation of \hat{p}, the proportion of the sample that are brown.
B. Show that the conditions are satisfied that will ensure that the distribution of \hat{p} is approximately normal.
C. Find the probability that the proportion of brown M\&M's is greater than 35%.
D. Find the probability that the proportion of brown M\&M's is between 25% and 35%.
E. If the sample is increased to 200 , how will the answer to C change? Explain.
F. If the sample is increased to 200, how will the answer to D change? Explain.
G. How large must the sample size be so that 90% of all sample proportion will be within 2% of the population proportion, $p=30 \%$.
H. A sample of 125 peanut M\&M's is drawn and it is found that 50 of the 125 are brown. If peanut M\&M's are distributed with the same proportions as the plain M\&M's, what is the probability of obtaining a sample proportion as large or larger than this one? What can be said about the proportion of brown peanut M\&M's?

ANSWERS to CLT Questions:

1. A. mean $=\$ 525$, std. dev. $=\frac{\$ 375}{\sqrt{60}} \approx \$ 48.41$ The shape is approx. normal. (The CLT applies since the sample size is large.
B. $z=\frac{610-525}{\frac{375}{\sqrt{60}}}=1.756 \quad \mathrm{P}(\mathrm{z}>1.756)=0.0396$
C. $\mathrm{P}(500<\mathrm{x}<600)=\mathrm{P}(-0.516<\mathrm{z}<1.54)=0.635$
D. z score for 95% tile is $1.645 \quad 1.645=\frac{X-525}{48.41} \quad X \approx \$ 604.63 \quad M \approx \$ 79.63$
E. It would increase, because a larger sample size will reduce the variation among sample means, causing more x -bars to land between $\$ 500$ and $\$ 600$.
F. z score for 90% tile $\approx 1.28 \quad 1.28=\frac{550-525}{\frac{325}{\sqrt{n}}} \quad$ So $\mathrm{n} \approx 369.5$. Round UP to 370 since a larger sample size will ensure the likelihood is greater than or equal to $\$ 550$.
2. A. mean $=.30, \operatorname{StdDev}=\sqrt{\frac{0.3 \cdot 0.7}{125}} \approx 0.041$
B. $0.3(125)=37.5$ and $0.7(125)=87.5$. Both are >10, so the shape of the sampling distribution of $p-$ hats will be approx. normal.
C. $z=\frac{0.35-0.30}{\sqrt{\frac{0.3 \cdot 0.7}{125}}} \approx 1.22 \quad \mathrm{P}(\mathrm{z}>1.22) \approx 0.111$
D. $\mathrm{P}(0.25<\mathrm{p}$-hat $<0.35)=\mathrm{P}(-1.22<\mathrm{z}<1.22)=0.7775$
E. It will decrease, since the variation among p-hats will decrease, causing less p-hats to fall beyond 0.35
F. It will increase since the variation among p-hats will decrease, causing more p-hats to land between 0.25 and 0.35
G. z for 95% tile $\approx 1.645 \quad 1.645=\frac{0.32-0.30}{\sqrt{\frac{0.3 \cdot 0.7}{n}}} \quad \mathrm{n} \approx 1420.66$, so round to 1421 to ensure the p -hats will be within 2% of $\mathrm{p}=30 \%$.
H. p-hat $=\frac{50}{125}=0.4 \quad \sigma_{\hat{p}}=\sqrt{\frac{0.3 \cdot 0.7}{125}} \approx 0.041 \quad z=\frac{0.4-0.3}{0.041} \approx 2.43 \mathrm{P}(\mathrm{z}>2.43) \approx 0.0075$
