
Cluster Sampling:  High Quality Information at a Bargain Basement Price 

Students readily come to understand that random sampling is the standard by which 
sampling is measured.  The foundation of all sampling is the idea of a simple random 
sample (SRS), in which each group of size n has the same chance of being chosen to be 
the sample.  An SRS will provide an unbiased estimate of a population parameter and has 
predictable sampling variability.  This allows the results of a single sample, through a 
confidence interval, to provide a range of plausible values for a population parameter.  
So, why would anyone do sampling any differently?  What’s the motivation for stratified 
sampling, cluster sampling, and more complicated multistage samples? 

In sampling, there are always two competing interests.  The first of these is the obvious 
goal to get as much information about a population as possible.  With this, you can make 
accurate estimates of the characteristics of the population.  The second interest in 
sampling, often more hidden, is that you want to gather this information at a low cost, 
expressed either in financial terms or in terms of the effort and time required to complete 
your sampling.  The cost of sampling is often given a much smaller role in introductory 
statistics courses.  It may be for very good reasons that this is done, as it allows students 
to focus on the very important concepts of bias, sampling variability, and precision.   

However, to understand why a researcher would adopt a sampling strategy other than an 
SRS, the cost of carrying out the sample must be considered.   

Here’s a setting that can illustrate these ideas.  Eighteen hundred first-year students at a 
fictitious two-year college are enrolled in math classes.  The school offers a wide range of 
courses, from remedial algebra through trigonometry, calculus, and differential equations.  
The student newspaper is doing a story on the curriculum choices of the student body and 
would like to know the average SAT math score of first-year students.  Despite their 
requests, the administration won’t release this information, so they decide to sample the 
student body to answer the question.  They’d like a sample of 120 students whom they 
will ask, confidentially, their SAT math score from high school.   

A simple random sample might be appropriate if they had a listing of all first-year 
students, but even armed with this list an SRS would be difficult to carry out.  The 
student body is very diverse, encompassing a wide range of ages and previous school 
experiences.  It would be hard to actually make contact with each of the 120 students 
selected in the sample, since they live all over the large city in which the school is 
located.  In cases like this, it is either impossible to make an SRS from the population or 
the cost of doing so is prohibitive. 

At the opening of school orientation, however, students are assigned, randomly, to 60 
orientation groups of about 30 students each.  Wouldn’t it be easier to just ask the 
students in some of these orientation groups for their SAT scores?  The students will all 
be gathered together for the orientation at a specific time and place, so including all 30 of 
the students in a given group would be easy enough.  This will also happen in the math 
classes to which they are assigned, so another sampling strategy would be to go to the 
first meeting of each of several math classes to survey the enrolled students.  This is the 



essence and rationale of cluster sampling:  rely on natural groupings of the members of a 
population to increase the efficiency with which information is gathered. 

But, students might say, isn’t this just like a convenience sample?  Won’t this method, 
too, introduce potential bias into the sampling process?  Also, some of the more astute 
students might wonder whether the cluster approach makes the formulas for expressing 
the sample results as a confidence interval no longer applicable.   Will the sampling 
distribution of cluster samples have predictable variability?  It’s important to distinguish 
between the convenience of a cluster sample and a convenience sample. 

To have confidence in the cluster sampling approach, two important issues must be 
resolved.  First, is the estimate made via the cluster approach without bias?  Second, is 
the sampling variability predictable for the cluster approach? We’ll try a simulation to 
gain some insight into these issues, and then make a more theoretical argument. 

Let’s go back to our hypothetical college, for which I’ve made up some hypothetical, but 
plausible data about their SAT math scores, orientation groups, and math courses.  

Here is part of a table of these values with 
each student’s ID, SAT math score, 
assigned orientation group, and assigned 
math class course numbers. The orientation 
groups are based on the randomly assigned 
student ID numbers, whereas the math class 
groupings are based on scores on a 
placement test that has shown moderate 
correlation with SAT scores in the past.  As 
is true at many colleges, higher course 
numbers correspond to the more advanced 
electives in math.   

Which grouping, orientation groups or math classes would be the best to use as clusters, 
and why? 

Our standard for evaluating the reliability of the 
cluster sampling approach will be a simple random 
sample of the students.  Since this is theoretical 
data, it’s easy enough to do an SRS, and repeat the 
process a number of times, so that we have a sense 
of the sampling distribution for an SRS.  Here is a 
histogram and a summary for 200 simple random 
samples, each composed of 120 students. 
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Student    
ID

SAT    
math

Orientation 
Group

Math  
Class

1401 560 47 41

661 420 23 5

1419 710 48 57

264 450 9 6

1638 510 55 43

235 530 8 29

758 420 26 3

1332 560 45 34

340 500 12 6

… … … …



 

 

Let’s compare this with the results of sampling with a cluster approach.  First, we need to 
be using comparably sized samples.  Since the orientation groups are each 30 students, 
choosing 4 of the groups, and sampling all students in the group, will make samples of 
120 students.  But how do we choose the 4 groups?  This is a critical question, and the 
answer is to choose them randomly.   

All sampling, if it is to be without bias, should include random selection.  Here the only 
difference is that we are randomly selecting among the groups rather than among the 
individuals.  But still, if the cluster groups are the same size, each individual’s chances of 
being included in the sample is the same as for an SRS (n / N), so in the long run, each 
student makes the same contribution to the mean of the sampling distribution as they 
would in an SRS.  This is what makes the method free from bias.  If the cluster groups 
are different in size, though, then each individual’s chances of being included is not the 
same, so there is some potential that the estimates made with cluster sampling will not be 
unbiased.  In our simulation, we’ve idealized this by making the groups all the same size.  
This lets us focus on the variability in cluster sampling. 

Here are the results of 200 samples done by 
randomly choosing four orientation groups 
from the 60.  The histogram of the sampling 
distribution is very similar to that of the SRS, 
and the numerical summary indicates that the 
mean and standard deviations are very close. 
 

Mean 544.71 
Std Dev 7.08 
N 200 

 
Does cluster sampling always work so neatly?  Let’s try choosing 200 cluster samples 
again, but this time we’ll use the math classes as our clusters.   

Wow!  That’s different!  Noting that the 
vertical axis has a different scale, the sample-
to-sample variability is much larger in this 
case.  The mean of this sampling distribution is 
quite close to the mean of the previous 
simulations – there isn’t any bias – but the 
standard deviation is many times larger. 
 

Mean 548.50 
Std Dev 35.42 
N 200 
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Why is this result so different from the previous cluster sampling?  The reason that the 
first (using the orientation groups) worked so well is that the orientation groups, 
randomly assigned, can be thought of as reasonably representative of the entire student 
population, in terms of the variable of interest, SAT math scores.  Each orientation group 
is just as likely to have a very high-scoring student, and just as likely to have a student 
who struggles in math.  So, on average, each different set of four groups will tend to give 
a result close to the population average.  This graphic illustrates the distribution in each 
of the 60 different orientation groups, with the mean marked with the diamond. 

This is not the case with the grouping in the math classes.  Here the groups are not 
typically the same, and each group doesn’t typically have the complete range of math 
SAT scores.  So it is more like that, if we happen to choose several of the more basic 
math classes in our set of four, that the SAT math score will be much lower than the 
population mean.  Conversely, we might get a couple of calculus classes and the 
differential equations class in one group of four, and would expect the mean of this 
sample to be much higher.  In this graphic for the math classes you can see that the mean 
SAT scores for the math classes vary widely, and that the spread of scores in each math 
class tends to be narrower than in the orientation groups. 
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This is borne out in the results of the simulation, where the variability is much greater for 
the sampling distribution that used the math classes as clusters.  A theoretical justification 
for this, complete with estimates of sampling variability, can be found in textbooks on 
sampling methodology [Scheaffer], but the essence of the argument can be made using 
the graphs above. 

This simulation was set up to illustrate the importance of the makeup of the groups when 
using cluster sampling.  In the real world it’s usually not likely to work out as neatly, 
with the natural cluster groups falling somewhere between our idealized model for the 
orientation groups, where each was essentially an SRS of the population, and the math 
classes in which there was a strong association between the grouping and the variable of 
interest.  

So, cluster sampling can be a very efficient means of gathering high-quality data from a 
population.  It can provide a wealth of information at a very reduced cost, providing the 
clusters are chosen so that the clusters are nearly identical, in terms of both center and 
variability, for the variable that is being measured.  If your population includes natural 
groups for which it is reasonable to believe that the makeup of the group is reasonably 
representative of the population, then cluster sampling is an alternative to consider. 
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